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Scalable quantum search using trapped ions
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We propose a scalable implementation of Grover’s quantum search algorithm in a trapped-ion quantum
information processor. The system is initialized in an entangled Dicke state by using adiabatic techniques. The
inversion-about-average and oracle operators take the form of single off-resonant laser pulses. This is made
possible by utilizing the physical symmetries of the trapped-ion linear crystal. The physical realization of the
algorithm represents a dramatic simplification: each logical iteration (oracle and inversion about average) requires
only two physical interaction steps, in contrast to the large number of concatenated gates required by previous
approaches. This not only facilitates the implementation but also increases the overall fidelity of the algorithm.
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I. INTRODUCTION

One of the most celebrated applications of quantum
information processing is Grover’s quantum search algorithm,
which allows an initially unknown element to be determined
from N equally likely possibilities in O(

√
N ) queries [1].

This outperforms the optimum classical strategy (a random
“trial and error” of elements), which requires O(N ) steps on
average. In addition to providing a speed-up of the unstructured
search problem, Grover’s algorithm can also be adapted to look
for solutions to a range of mathematically difficult problems
that have structure, by nesting one quantum search inside
another [2]. As with other applications of quantum computing,
the benefits of a quantum over a classical approach increase
with the size of the database. Indeed, it has been suggested
that the primary resource for quantum computation is a
Hilbert-space dimension, which grows exponentially with the
available physical resources [3].

Proof-of-principle quantum search has been successfully
demonstrated in nuclear magnetic resonance [4–6], linear
optical [7,8] and trapped-ion systems [9], as well as with
individual Rydberg atoms [10] and in classical optics [11].
Of these, only the trapped-ion platform possesses a fully
scalable Hilbert space and in this sense it is realistically the
only candidate for performing a practically useful quantum
search. We note, however, that while the trapped-ion system
is scalable [12], the largest dimensional quantum search so
far performed with trapped ions was for a database size of
N = 4 [9]. Extending the approach of Ref. [9] to a large
number of ions is highly demanding, since it requires the
ability to construct, with very high fidelity, a great number
of multiply conditional gates. For two ions, as in Ref. [9], each
oracle query amounts to a controlled phase gate between the
ions. When N ions are involved, however, the oracle operator
becomes a gate which is multiply conditional upon the internal
state of all N ions. Although such a multiply conditional gate
can be decomposed efficiently using a series of one- and
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two-ion gates [13], in practice such a synthesis becomes a
daunting task, even for a moderate number of ions N , since
the number of the elementary gates grows exponentially with
N . For example, for a four-qubit register, the oracle may
be constructed using 13 two-qubit conditional gates [13],
each requiring several consecutive physical interactions, which
is beyond the capabilities of current experiments [14–16].
The above example makes it apparent that there is a clear
distinction between an approach which is formally scalable
and an approach which is realistically scalable using current
technology.

It is highly desirable, therefore, to find new ways to perform
quantum search in a scalable system, which does not require
the implementation of an exorbitant number of one- and
two-qubit gates. In this paper we propose an approach to
perform Grover’s search algorithm. The linear crystal of N ions
is prepared in a symmetric Dicke state with N/2 excitations,
|WN

N/2〉; hence, the register dimension scales exponentially
with the number of ions. The implementation of the algorithm
involves a series of red-sideband laser pulses addressing all,
or half, of the ions in the trap. Thus, each of the inversion-
about-average operator and the oracle query can be produced
in a single interaction step. Consequently, the total number of
physical steps is the same as the number of algorithmic steps.

The implementation of Grover’s search algorithm proposed
below follows earlier proposals, wherein the database scales
linearly [17] (see also [18]) and quadratically [19] with the
number of ions, N . The database size here, which is N ∼
2N

√
2/(πN ), scales exponentially with N and it is therefore

of fully quantum nature. The reduction of the full Hilbert space
of dimension 2N by a factor of

√
N is compensated by the

absence of any ancilla qubits or the need of error correction
because of the ultracompact implementation, in which each
logical mathematical step is realized with a single physical
interaction (laser pulse).

The remainder of this paper is organized as follows. A
brief review of Grover’s algorithm for a quantum-mechanical
speed-up of the unstructured search problem is given in Sec. II.
Particular attention is given to the ideas of amplitude amplifi-
cation and generalized reflections, which lie at the heart of the
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search algorithm. Section III introduces a model Hamiltonian
describing a single laser pulse illuminating a chain of trapped
ions, and a convenient Hilbert-space factorization, with which
to describe the dynamics. By making use of the simplified
dynamics in this factorized basis, we construct recipes for the
approximate synthesis of the two reflections required for a
quantum search, and examples of numerical simulations are
presented in Sec. IV. In Sec. V we summarize our findings.

II. GROVER’S SEARCH ALGORITHM

Grover’s algorithm provides a method for solving the
unstructured search problem, which can be stated as follows:
given a collection of database elements x = 1,2, . . . ,N , and
an oracle function f (x) that acts differently on one marked
element s to all others,

f (x) =
{

1, x = s,

0, x �= s,
(1)

find the marked element in as few calls to f (x) as possible [1].
If the database is encoded in a physical system that behaves
classically, then each oracle query can only act on a single
database element. In this case, the optimal search strategy is
simply a random selection of elements; on average, it would
be necessary to make approximately N /2 calls to the oracle
before the marked element s is located. The idea underlying
Grover’s algorithm is to encode the database in a physical
system that behaves quantum-mechanically. Therefore, each
possible search outcome is represented as a basis vector |x〉 in
an N -dimensional Hilbert space; correspondingly, the marked
element is encoded by a marked state |s〉. Hence, one can
apply unitary operations (involving the oracle function) to
superpositions of the different search outcomes. It is thus
possible to amplify the amplitude of the marked state |s〉
using constructive interference, while attenuating all other
amplitudes, and to locate the marked element in O(

√
N ) steps.

Before the execution of the algorithm, the quantum register is
prepared in an equal superposition of all basis elements,

|W 〉 = 1√
N

N∑
x=1

|x〉. (2)

Central to the operation of the quantum search algorithm
is the idea of generalized complex reflections, known in the
computer science literature as Householder reflections [20]:

M̂ψ (φ) = 1 + (eiφ − 1)|ψ〉〈ψ |. (3)

When the phase φ is set equal to π , the effect of M̂ψ (φ) on any
vector is to invert the sign of the component of this vector along
|ψ〉 while leaving all other components unchanged, which
amounts to a reflection with respect to an (N−1)-dimensional
plane orthogonal to |ψ〉. Allowing φ to take arbitrary values
extends the concept of reflection by imprinting an arbitrary
phase onto the component along |ψ〉, rather than a simple
sign inversion. Householder reflections are widely used in
classical data analysis and also constitute a powerful tool
for coherent manipulation of quantum systems [21–25]. The
core component of Grover’s algorithm is a pair of coupled

Householder reflections, which together form a single Grover
operator Ĝ:

Ĝ = M̂W (ϕW ) M̂s(ϕs). (4)

According to standard nomenclature, the operator M̂s(ϕs) is
referred to as the oracle query, while M̂W (ϕW ) is known as the
inversion-about-average operator.

We note that with the initial state given in Eq. (2), and during
successive applications of the operator Ĝ, the state vector
for the system begins and remains in the two-dimensional
subspace defined by the nonorthogonal states |s〉 and |W 〉.
Each application of Ĝ amplifies the marked state population
until it reaches a maximum value close to unity after nG

iterations, at which point the search result can be read out
by a measurement in the computational basis.

The problem of how to optimize the quantum search routine
by allowing arbitrary ϕW and ϕs has been studied extensively
[26–28]. It is found that the maximum possible amplitude
amplification per step of the marked state arises when the
phases ϕW and ϕs are both set to π (as in Grover’s original
proposal [1]). The corresponding minimum number of search
steps, nmin

G , is given by

nmin
G =

[
π

2 arcsin(2
√
N − 1/N )

]
N � 1−−−−−−→

[
π

√
N

4

]
,

(5)

where [n] denotes the integer part of n. However, this choice
of phases is not unique. For large N , as long as the phase
matching condition ϕW = ϕs = ϕ is satisfied [27], a high-
fidelity search can be performed for any value of ϕ in the
range 0 < ϕ � π , and for certain values of ϕ, a deterministic
quantum search is possible [26].

In the following two sections, we describe how to perform
a physically efficient quantum search using the dynamic
symmetries in a system of trapped ions.

III. ION-TRAP IMPLEMENTATION

A. Model Hamiltonian

We consider N ions confined in a linear Paul trap, which
are cooled to their vibrational ground states. Each has two
relevant internal states |0〉 and |1〉, with respective transition
frequency ω0. The linear ion crystal interacts with a laser
pulse with frequency ωL = ω0 − ωtr − δ, where ωtr is the
axial trap frequency and δ is the laser detuning from the first
red-sideband resonance. We assume that the phonon spectrum
can be resolved sufficiently well that only the center-of-mass
mode is excited by this interaction and that other vibrational
modes can safely be neglected. In the Lamb-Dicke limit,
and after making the optical and vibrational rotating-wave
approximations, the interaction Hamiltonian is [29]

ĤI (t) = h̄

N∑
k=1

[
g(t)(σ+

k â + σ−
k â†) + δ

2
σ

(z)
k

]
, (6)

where σ+
k = |1k〉〈0k| and σ−

k = |0k〉〈1k| are the raising and
lowering operators for the internal states of the kth ion, σ

(z)
k

is the Pauli spin matrix, and â† and â are respectively the
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creation and annihilation operators of center-of-mass phonons.
The coupling between the internal and motional degrees of
freedom is g(t) = η	(t)/

√
N , where η =

√
h̄|k|2/2Mωtr is

the single-ion Lamb-Dicke parameter, with k being the laser
wave vector and M the mass of the ion. The function 	(t) is
the real-valued time-dependent Rabi frequency.

Hamiltonian (6) conserves the total number of excitations
(ni ionic plus np motional), which, in the scheme we propose,
is half the number of ions: N/2 (with N even), ni + np = N/2.
The energy pattern splits into manifolds corresponding to ni

ionic and np = N/2 − ni motional excitations. Each manifold
is CN

ni
-fold degenerate, where CN

ni
= N !/ni!(N − ni)!. It is

readily verified that the dimension of the ni = N/2 manifold,
D, grows exponentially with N ; indeed, for large N we have

N ≡ CN
N/2 ∼ 2N

√
πN/2

[
1 − 1

4N
+ O(N−2)

]
. (7)

We use the subspace of the overall Hilbert space, which spans
the manifold D, to represent the state of the register in Sec. IV;
D is the set of states which encode the database ofN elements.

B. Hilbert-space factorization

It is possible to move to a new basis in which the Hilbert
space is factorized into a collection of noninteracting chains of
states. The new states we shall call MS states, since they can
be obtained by the multilevel Morris-Shore (MS) factorization
[30].

To determine the MS states, first we rewrite Hamiltonian (6)
in terms of the total ionic pseudospin:

ĤI (t) = h̄g(t)(âĴ+ + â†Ĵ−) + h̄δĴz, (8)

where Ĵ± = ∑N
k=1 σ±

k and Ĵz = 1
2

∑N
k=1 σ

(z)
k . The MS basis

consists of the set of the eigenvectors of the two commuting
operators Ĵ 2 and Ĵz, where Ĵ 2 = 1

2 (Ĵ+Ĵ− + Ĵ−Ĵ+) + Ĵ 2
z .

Therefore, each MS state is assigned two quantum num-
bers, respectively j and mj . Since Ĵ 2 commutes also with
Hamiltonian (8), the Hilbert space factorizes into a set of
decoupled chains with different values of j .

The MS states are sketched in Fig. 1 for six ions with three
excitations. Because the laser pulse couples equally to every
ion in the trap, the longest chain is comprised of the symmetric
Dicke states |WN

ni
〉, wherein a given number of ionic excitations

ni is shared evenly among all the ions in the trap [31]. Each
chain is assigned different j and is comprised of states with
different mj , which varies from 0 to j , corresponding to the
number of excited ions. If ni of the ions are excited, then

mj = ni − N

2
= −np. (9)

Since the total number of excitations is half the number of
ions, then from Eq. (9) it follows for each chain that mj has a
maximum value of 0 (i.e., states with mj > 0 are inaccessible).
By analogy with the traditional angular momentum operators,
it follows that the number of states in a chain is equal to
j + 1 (j of the states are not accessible), from which j can
be inferred. The longest chain corresponds to j = N/2, the
next longest to j = N/2 − 1, and so on, and overall there are
[N/2 + 1] chains of different length in the factorized coupling
scheme.

Dark states

FIG. 1. The MS basis states for N = 6 ions with three excitations
form a series of independent chainwise linkages. Since the total
number of excitations is half the number of ions, then from Eq. (9) it
follows that states with mj > 0 are inaccessible and are therefore not
shown. The states that make up the longest ladder are all symmetric
Dicke states [31]. The number of motional np and ionic ni excitations
for each level can be inferred from mj [Eq. (9)].

For the following analysis, it is necessary to go further and
calculate the couplings in the MS basis. The coupling between
the neighbors |j,mj 〉 and |j,mj − 1〉 follows immediately
from the matrix elements of the operators â† and Ĵ−:

λ
−mj

j (t) = g(t)
√

np(j + mj )(j − mj + 1)

= g(t)
√

np(j + ni − N/2)(j + N/2 + 1 − ni).

(10)

As illustrated in Fig. 1, there can be many different
degenerate MS states with the same values of j and mj . We
label the states with a given j �= N/2 and mj = 0 with |χj (k)〉,
where k = 1, . . . ,Nj , with Nj = CN

N/2−j − CN
N/2−j−1.

IV. IMPLEMENTATION OF GROVER’S ALGORITHM

The manifold D, which encodes the database elements,
consists of the states, for which the pseudoangular momentum
projection is mj = 0 [Eq. (9)]. This requires that the total
number of ions N is even. Half of these are in state |1〉, while
the other half are in state |0〉 (ni = N/2). The number of
elementsN in the database therefore scales exponentially with
the number of ions N [Eq. (7)]. The elements |x〉 in Eq. (2),
which belong to D, can now be written as

|x〉 = Px |11 · · · 1N/20N/2+1 · · · 0N 〉, (11)

where the subscript x runs over all distinct permutations
Px of the ions’ internal states. The initial state |W 〉 is thus
a symmetric Dicke state |WN

N/2〉 of N ions sharing N/2
excitations,∣∣WN

N/2

〉 = 1√
CN

N/2

∑
x

Px |11 · · · 1N/20N/2+1 · · · 0N 〉. (12)

Our proposed experimental procedure consists of four op-
erations. (i) The ions are first initialized in the entangled
Dicke state [Eq. (12)]. This may be achieved using adiabatic
passage techniques, involving either a pair of chirped laser
pulses [31,32] or two pairs of delayed but overlapping laser

042328-3



IVANOV, IVANOV, LININGTON, AND VITANOV PHYSICAL REVIEW A 81, 042328 (2010)

pulses [33], and using global addressing. (ii) Synthesis of the
inversion-about-average operator is appealingly compact: M̂W

is a single red-sideband off-resonant laser pulse addressing all
ions in the linear chain. (iii) The oracle query M̂s is also a single
red-sideband laser pulse, applied on half of the ions. This could
be performed by transferring the other half to an electronic
state, which does not interact with the laser, as explained in
Ref. [34]. After an appropriate number of iterations [Eq. (5)],
the system evolves into the marked state |s〉, which can be
identified by performing (iv) a fluorescence measurement on
the entire chain.

A. Synthesis of the inversion-about-average operator

In most existing proposals for implementing Grover’s
search algorithm using trapped ions, the generation of M̂W

requires a large number of concatenated physical interaction
steps, even for moderate register size N . However, by restrict-
ing the dynamics to the subspace of the overall Hilbert space
in which only half of the ions are excited, it becomes possible
for this operator to synthesize in only a single interaction step.
This simplification is achieved by taking advantage of the fact
that both Hamiltonian (8) and the state |WN

N/2〉 are symmetric
under exchange of any two ions.

The energies of the MS states do not cross in time so that in
the limit δ � 1/T the transitions between the MS states vanish
due to the effect of adiabatic complete population return [35].
Each of the MS states acquires a phase shift ϕj (where the
index j corresponds to the eigenvalue of Ĵ 2) and the unitary
propagator within the Dicke manifoldD is a product of CN

N/2−1
coupled reflections [24]

ÛW = M̂W (ϕW )
N/2−1∏
j=1

Nj∏
k=1

M̂χj (k)(ϕj ), (13)

with Nj = CN
N/2−j − CN

N/2−j−1 and ϕW = ϕN/2. For a given
value of the coupling, the detuning may be adjusted in order to
control the phases ϕj . Ideally, these interaction parameters
would be chosen such that ϕW �= 0 (e.g., ϕW = π ), while
ϕj �=N/2 = 0 as this would result in ÛW being identical to the
inversion-about-average operator M̂W (ϕW ).

B. Synthesis of the oracle operator

The effect of each oracle query M̂s(φs) is to imprint a
phase shift φs on the marked state |s〉, while leaving all other
computational basis states unchanged. In general this can be
achieved by a multiply conditional phase gate upon the internal
state of all N ions in the trap. When more than a few ions are
involved, this becomes a prohibitively complicated operation,
which generally requires an immense number of one- and
two-qubit gates [13]. However, since we work not in the whole
Hilbert space but rather in the manifold D, the oracle operator
can be implemented in a much simpler fashion—by a single
red-sideband laser pulse, addressing uniformly those N/2 ions
in the trap which share the excitation of the marked state.

Let us consider an example, when the marked state is |s〉 =
|111000〉. Then we address the first three ions. Since the initial
state |WN

N/2〉 and the interactions with the laser are symmetric
under exchange of the first three ions, and the last three, as well,

during the execution of the algorithm, the state of the system
is a linear combination of the states |�k〉 = |WN/2

N/2−k〉|WN/2
k 〉,

k = 0, . . . ,N/2; the marked state is |s〉 = |�0〉. Because the
Hamiltonian, which describes the oracle call, does not change
the total number of excitations of the first (and the last) three
ions (i.e., it does not drive the system between |�k1〉 and |�k2〉
for k1 �= k2), in the adiabatic limit the states |�k〉 acquire only
phase shifts φk . Therefore, the propagator in the manifold D is
formally described by the action of N/2 coupled reflections,

Ûs = M̂s(φs)
N/2−1∏
k=1

M̂�k
(φk). (14)

Hence, as in the case of the inversion-about-average operator,
we need to control N/2 phases. The interaction parameters
should be chosen such that φs = ϕW , while φk �=N/2 = 0, as
this would result in Ûs being identical to the oracle operator
M̂s(φs).

C. Phase conditions

The phase conditions for the propagators ÛW and Ûs ,
derived above, cannot be satisfied exactly, since the phases
ϕk and φk are overly commensurate. However, one can still
perform the algorithm with sufficiently high fidelity:

P = 1 − 2 |Re〈f |
f 〉| . (15)

Here |f 〉 is the state of the system after the completion of the
algorithm and |
f 〉 is its deviation due to the phases deviation.
Fortunately, a Fourier expansion reveals that phase deviation
of all odd orders leads to the purely imaginary bracket 〈f |
f 〉
and, hence, does not contribute to Eq. (15). As a result, the
algorithm is less sensitive to phase deviations since only
those of second order have a leading effect on the final state
populations.

D. Practical considerations

Below we briefly discuss different experimental issues
which are usually encountered in practice. Ideally we need
uniform addressing of the ion chain to initialize the system and
to perform the search algorithm. To estimate the error due to
a possible inhomogeneous addressing, we assume a Gaussian
spatial distribution of the laser intensity. Then the first and
the last ions experience a fraction 1 − ξ of the intensity of
the field in the center of the chain. According to calculations,
for a deviation of ξ = 0.01, the fidelity decreases to about
0.96 for N = 6 ions. A possible way to achieve a more robust
implementation is to use composite pulses, which have been
used successfully with trapped ions [36].

Another potentially detrimental effect could be caused by
the nonresonant transitions to vibrational modes other than the
center-of-mass mode. These have a negligible effect if the
detuning is much less than the trap frequency ωz and
the Rabi frequency is less than the trap frequency ωz. For the
implementation of the oracle and the inversion-about-average
operators for N = 8 ions, we can use a laser pulse with width
T = 60 µs. Hence, the Rabi frequencies and the detunings are
approximately 	o/2π = 810 kHz and δo/2π = 114 kHz for
the oracle and 	r/2π = 915 kHz and δr/2π = 56 kHz for
the inversion-about-average operator. The ac Stark shift due
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to the presence of the off-resonant carrier transition gives rise
to a phase φ for each qubit in state 1 and a phase −φ for
each qubit in state 0. Therefore, the total phase for each state
of the Dicke manifold is zero because it consists of an equal
number of qubits in states 0 and 1. Moreover, the off-resonant
carrier transitions can be reduced by using pulse shapes which
have no spectral Fourier component at the carrier transition
[36].

A major experimental obstacle is the motional decoherence,
especially if the interaction takes a long time. The total
interaction time for the implementation of the Grover algo-
rithm is TG = NG(3To + 3Tr ), where To and Tr are the laser
pulse widths for the oracle and the inversion-about-average,
respectively, and the factor of 3 ensures that the pulses are well
separated from each other (this factor may be reduced with
appropriate arrangements). For N = 8 ions, the oracle needs
half the coupling compared to the inversion-about-average;
hence, we take To = Tr/2. Therefore, the total interaction
time for the algorithm is TG = 27Tr . Hence, for pulse width
Tr = 60 µs, we have TG = 1.6 ms. For a trap frequency
ωz = 2π × 4 MHz and a heating rate for a single 40Ca+ ion of
approximately 5 phonons/s [37], we predict heating of about
0.06 phonons in total.

Any fluctuations of the applied magnetic fields cause a
collective dephasing of the qubit states which limits the
storage time. An advantage of our method is that the quantum
information is encoded in the Dicke manifold which is a
decoherence-free subspace, because it consists of states with
half of the ions in the excited state and half in the ground state.
Hence, quantum information is protected from the induced
collective dephasing, which is the limit to quantum memory,
as explained in Ref. [38].

E. Numerical demonstration

As a demonstration, we have solved the Schrödinger
equation numerically for a Gaussian pulse shape and a constant
detuning δ. Sample results are shown in Fig. 2 and Table I for
N = 6, 8, and 10 ions with 3, 4, and 5 excitations, respectively,
which imply databases of N = 20, 70, and 252 elements.
The fidelity plotted on the vertical axis is the time-dependent
population of the marked state. The system of ions is assumed
to be prepared initially in the Dicke superposition |WN

N/2〉
of ionic collective states, each of which contains exactly
N/2 ion qubits in state |1〉 and N/2 in state |0〉. Each
Grover iteration consists of a phase shift for the marked
state (oracle call), which amounts a single red-sideband laser
pulse, addressing uniformly those N/2 ions in the chain which
share the excitation of the marked state, followed by a single
red-sideband pulse, which addresses uniformly the entire ion
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FIG. 2. (Color online) Simulation of the Grover search algorithm
with N ions and N/2 excitations (register dimension CN

N/2), for
N = 6 (upper panel), N = 8 (middle panel), and N = 10 (lower
panel). The system of ions is assumed to be initialized in the
symmetric Dicke state |WN

N/2〉. The laser pulses have a Gaussian

shape, g(t) = g0e
−t2/T 2

. The thin vertical lines display the times when
each logical mathematical step (an implementation of the Grover
operator) is completed. The computed numerically scaled detunings
and peak Rabi frequencies for the oracle and the inversion-about-
average operators, respectively, are given in Table I. The marked-state
population (the fidelity) of around 99% is obtained after ng = 3,
6, and 12 steps, respectively, in exact agreement with Grover’s
value [Eq. (5)]. The numerical simulation includes all off-resonant
transitions to states with mj �= 0.

chain (the inversion-about-average operator). The number of
steps, for which the algorithm singles out the marked item with
a probability of around 99%, is respectively ng = 3, 6, and 12
as predicted by Eq. (5).

V. CONCLUSIONS

Despite the intense flurry of theoretical and experimental
activity in the decade following Grover’s original proposal
for a quantum speed-up of unstructured search, a large
discrepancy still remains between the current experimental
state of the art and what is required for a practically useful
quantum search. To highlight this incongruence, we note that
the only physical system in which a scalable quantum search
has been performed is in a chain of trapped ions, and in that
experiment, the search space totaled just four elements. An

TABLE I. Numerically computed scaled detunings and peak Rabi frequencies for the oracle and the inversion-about-average
operators, respectively.

Number of ions Number of elements Number of steps Oracle Inversion

(N ) (N ) (nG) δT g0T δT g0T

6 20 3 19.470 28.610 10.320 25.830
8 70 6 21.400 10.800 21.050 24.400
10 252 12 15.687 70.322 88.565 87.142
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important intermediate goal on the long road to performing a
practically useful quantum search is to demonstrate Grover’s
algorithm in a moderately sized trapped-ion quantum register.
The standard approach of building up the many-ion Grover
operator using a network of single- and two-qubit gates
is inappropriate for this task, since the required physical
resources far exceed those available in today’s experiments.
By contrast, in this paper, we have proposed to construct the
many-ion Grover operator using only two single off-resonant
laser pulses, with suitably chosen peak Rabi frequencies and
detunings, which synthesize the inversion-about-average and
oracle operators, each in a single shot.

A compact recipe for synthesizing the inversion-about-
average operator was derived by factorizing the overall Hilbert
space into a series of independent ladders. The coupling
strengths between the MS states were determined solely

through a consideration of the angular momentum structure of
the combined ionic pseudospin. The technique proposed in this
paper raises the prospect of demonstrating Grover’s algorithm
in a moderately sized trapped-ion database comprising up
to several hundred elements, and which scales exponentially
with the number of ions; this is a necessary step on the path
to demonstrating a practically useful quantum search, which
remains a long-term goal.
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